Search results for "Missing energy"

showing 10 items of 47 documents

Update of the search for supersymmetric particles in scenarios with Gravitino LSP and Sleptons NLSP

2001

An update of the search for sleptons, neutralinos and charginos in the context of scenarios where the lightest supersymmetric particle is the gravitino and the next-to-lightest supersymmetric particle is a slepton, is presented, together with the update of the search for heavy stable charged particles in light gravitino scenarios and Minimal Supersymmetric Standard Models. Data collected in 1999 with the DELPHI detector at centre-of-mass energies around 192, 196, 200 and 202 GeV were analysed. No evidence for the production of these supersymmetric particles was found. Hence, new mass limits were derived at 95% confidence level.

NEUTRALINOSNuclear and High Energy PhysicsParticle physicsMONTE-CARLO SIMULATION; LOWEST ORDER CALCULATIONS; E(+)E(-) COLLISIONS; 2-PHOTON PROCESSES; PAIR PRODUCTION; MISSING ENERGY; STAU NLSP; BREAKING; SUPERGRAVITY; NEUTRALINOSLOWEST ORDER CALCULATIONSPAIR PRODUCTIONMONTE-CARLO SIMULATIONFOS: Physical sciences2-PHOTON PROCESSESContext (language use)01 natural sciencesLightest Supersymmetric ParticlePartícules (Física nuclear)High Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)E(+)E(-) COLLISIONS0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]SUPERGRAVITY010306 general physicsDELPHIPhysics010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyLARGE ELECTRON POSITRON COLLIDERCharged particleSTAU NLSPPARTICLE PHYSICS; LARGE ELECTRON POSITRON COLLIDER; DELPHIParticlePARTICLE PHYSICSMISSING ENERGYGravitinoFísica nuclearHigh Energy Physics::ExperimentParticle Physics - ExperimentBREAKING
researchProduct

Photon events with missing energy at root s=183 to 189 GeV

2000

The production of single photons has been studied in the reaction e+e- -> gamma + invisible particles at centre-of-mass energies of 183 GeV and 189 GeV. A previously published analysis of events with multi-photon final states accompanied by missing energy has been updated with 189 GeV data. The data were collected with the DELPHI detector and correspond to integrated luminosities of about 51 pb^{-1} and 158 pb^{-1} at the two energies. The number of light neutrino families is measured to be 2.84 +/- 0.15(stat) +/- 0.14(syst). The absence of an excess of events beyond that expected from Standard Model processes is used to set limits on new physics as described by supersymmetric and compos…

NEUTRALINOSParticle physicsDIMENSIONSPhotonPhysics and Astronomy (miscellaneous)Physics beyond the Standard ModelAstrophysics::High Energy Astrophysical PhenomenaSTANDARD MODELFOS: Physical sciencesScale (descriptive set theory)7. Clean energy01 natural sciencesPartícules (Física nuclear)Standard ModelHigh Energy Physics - ExperimentGravitationHigh Energy Physics - Experiment (hep-ex)E(+)E(-) COLLISIONSSIGNALSSEARCH0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]010306 general physicsNuclear ExperimentEngineering (miscellaneous)DELPHIPhysicsMissing energy010308 nuclear & particles physicsSUPERLIGHT GRAVITINOLEPLARGE ELECTRON POSITRON COLLIDERSINGLE-PHOTONCOLLIDERSPARTICLE PHYSICS; LARGE ELECTRON POSITRON COLLIDER; DELPHIPARTICLE PHYSICSProduction (computer science)Física nuclearHigh Energy Physics::ExperimentNeutrinoE(+)E(-) COLLISIONS; SUPERLIGHT GRAVITINO; STANDARD MODEL; SINGLE-PHOTON; COLLIDERS; SEARCH; LEP; NEUTRALINOS; DIMENSIONS; SIGNALSParticle Physics - Experiment
researchProduct

Shining Light on the Scotogenic Model: Interplay of Colliders and Cosmology

2019

In the framework of the scotogenic model, which features radiative generation of neutrino masses, we explore light dark matter scenario. Throughout the paper we chiefly focus on keV-scale dark matter which can be produced either via freeze-in through the decays of the new scalars, or from the decays of next-to-lightest fermionic particle in the spectrum, which is produced through freeze-out. The latter mechanism is required to be suppressed as it typically produces a hot dark matter component. Constraints from BBN are also considered and in combination with the former production mechanism they impose the dark matter to be light. For this scenario we consider signatures at High Luminosity LH…

Nuclear and High Energy PhysicsParticle physicsCosmology and Nongalactic Astrophysics (astro-ph.CO)Dark matterFOS: Physical sciencesAstrophysics::Cosmology and Extragalactic Astrophysics01 natural sciencesCosmologyHigh Energy Physics - Phenomenology (hep-ph)0103 physical sciencesNeutrino Physicslcsh:Nuclear and particle physics. Atomic energy. Radioactivity010306 general physicsLight dark matterPhysicsLarge Hadron ColliderMissing energy010308 nuclear & particles physicsHot dark matterCosmology of Theories beyond the SMHigh Energy Physics - PhenomenologyBeyond Standard Modellcsh:QC770-798High Energy Physics::ExperimentNeutrinoLeptonAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

Probing Novel Scalar and Tensor Interactions from (Ultra)Cold Neutrons to the LHC

2012

Scalar and tensor interactions were once competitors to the now well-established V-A structure of the Standard Model weak interactions. We revisit these interactions and survey constraints from low-energy probes (neutron, nuclear, and pion decays) as well as collider searches. Currently, the most stringent limit on scalar and tensor interactions arise from 0+ -> 0+ nuclear decays and the radiative pion decay pi -> e nu gamma, respectively. For the future, we find that upcoming neutron beta decay and LHC measurements will compete in setting the most stringent bounds. For neutron beta decay, we demonstrate the importance of lattice computations of the neutron-to-proton matrix elements t…

Nuclear and High Energy PhysicsParticle physicsNuclear TheoryNuclear TheoryLattice field theoryFOS: Physical sciences01 natural sciencesNuclear physicsNuclear Theory (nucl-th)PionHigh Energy Physics - Phenomenology (hep-ph)High Energy Physics - Lattice0103 physical sciencesRadiative transferNeutronNuclear Experiment010306 general physicsCharged currentPhysicsLarge Hadron ColliderMissing energy010308 nuclear & particles physicsHigh Energy Physics - Lattice (hep-lat)Scalar (physics)High Energy Physics - PhenomenologyHigh Energy Physics::Experiment
researchProduct

Probes of the Standard Model effective field theory extended with a right-handed neutrino

2019

If neutrinos are Dirac particles and, as suggested by the so far null LHC results, any new physics lies at energies well above the electroweak scale, the Standard Model effective field theory has to be extended with operators involving the right-handed neutrinos. In this paper, we study this effective field theory and set constraints on the different dimension-six interactions. To that aim, we use LHC searches for associated production of light (and tau) leptons with missing energy, monojet searches, as well as pion and tau decays. Our bounds are generally above the TeV for order one couplings. One particular exception is given by operators involving top quarks. These provide new signals in…

Nuclear and High Energy PhysicsParticle physicsPhysics beyond the Standard ModelFOS: Physical sciencesComputer Science::Digital Libraries01 natural sciencesHigh Energy Physics - ExperimentStandard ModelHigh Energy Physics - Experiment (hep-ex)High Energy Physics - Phenomenology (hep-ph)0103 physical sciencesEffective field theoryNeutrino Physicslcsh:Nuclear and particle physics. Atomic energy. Radioactivity010306 general physicsPhysicsLarge Hadron ColliderMissing energy010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyEffective Field TheoriesNeutrino physicsHigh Energy Physics - PhenomenologyBeyond Standard ModelComputer Science::Mathematical Softwarelcsh:QC770-798High Energy Physics::ExperimentNeutrinoElectroweak scaleLeptonJournal of High Energy Physics
researchProduct

Multilepton dark matter signals

2020

The signatures of dark matter at the LHC commonly involve, in simplified scenarios, the production of a single particle plus large missing energy, from the undetected dark matter. However, in $Z'$-portal scenarios anomaly cancellation requires the presence of extra dark leptons in the dark sector. We investigate the signatures of the minimal scenarios of this kind, which involve cascade decays of the extra $Z'$ boson into the dark leptons, identifying a four-lepton signal as the most promising one. We estimate the sensitivity to this signal at the LHC, the high-luminosity LHC upgrade, a possible high-energy upgrade, as well as a future circular collider. For $Z'$ couplings compatible with c…

Nuclear and High Energy PhysicsParticle physicsPhysics::Instrumentation and DetectorsDark matterFOS: Physical sciencesAstrophysics::Cosmology and Extragalactic Astrophysics7. Clean energy01 natural sciencesFuture Circular ColliderHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)High Energy Physics - Phenomenology (hep-ph)0103 physical scienceslcsh:Nuclear and particle physics. Atomic energy. Radioactivity010306 general physicsBosonPhysicsMissing energyLarge Hadron Collider010308 nuclear & particles physicsElectroweak interactionHigh Energy Physics::PhenomenologyHigh Energy Physics - PhenomenologyUpgradeGauge SymmetryBeyond Standard Modellcsh:QC770-798High Energy Physics::ExperimentLepton
researchProduct

Search for the standard model Higgs boson

1993

Using a data sample corresponding to about 1 233 000 hadronic Z decays collected by the ALEPH experiment at LEP, the reaction e+e- --> HZ* has been used to search for the standard model Higgs boson, in association with missing energy when Z* --> nunuBAR, or with a pair of energetic leptons when Z* --> e+e- or mu+mu-. No signal was found and, at the 95% confidence level, m(H) exceeds 58.4 GeV/c2. RI ANTONELLI, ANTONELLA/C-6238-2011; Buttar, Craig/D-3706-2011; Stahl, Achim/E-8846-2011; Passalacqua, Luca/F-5127-2011; Murtas, Fabrizio/B-5729-2012; St.Denis, Richard/C-8997-2012; Forti, Francesco/H-3035-2011; Ferrante, Isidoro/F-1017-2012

Nuclear and High Energy PhysicsParticle physics[PHYS.HEXP] Physics [physics]/High Energy Physics - Experiment [hep-ex]Electron–positron annihilationHadronElementary particle01 natural sciencesinternet searchingdistance calculationsStandard ModelALEPH Experiment0103 physical sciencesgraph applications.[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]010306 general physicsALEPH experimentPhysicsMissing energy010308 nuclear & particles physicsPhysicsHigh Energy Physics::Phenomenologymetric spacelcsh:QC1-999Higgs bosonHigh Energy Physics::Experimentlcsh:PhysicsParticle Physics - ExperimentLepton
researchProduct

Search for Production of Invisible Final States in Single-Photon Decays of Υ(1S)

2010

We search for single-photon decays of the Upsilon(1S) resonance, Upsilon->gamma+invisible, where the invisible state is either a particle of definite mass, such as a light Higgs boson A0, or a pair of dark matter particles, chi chi-bar. Both A0 and chi are assumed to have zero spin. We tag Upsilon(1S) decays with a dipion transition Upsilon(2S)->pi+pi-Upsilon(1S) and look for events with a single energetic photon and significant missing energy. We find no evidence for such processes in the mass range m_A0<=9.2 GeV and m_chi<=4.5 GeV in the sample of 98e6 Upsilon(2S) decays collected with the BaBar detector and set stringent limits on new physics models that contain light dark ma…

Particle physicsPhotonAstrophysics::High Energy Astrophysical PhenomenaPhysics beyond the Standard ModelElectron–positron annihilationDark matterFOS: Physical sciencesGeneral Physics and Astronomy01 natural sciencesResonance (particle physics)High Energy Physics - ExperimentNuclear physicsHigh Energy Physics - Experiment (hep-ex)PACS: 13.20.Gd 12.60.Jv 14.80.Da 95.35.+d0103 physical sciencessingle-photon decays of Upsilon(1S)[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]010306 general physicsLight dark matterPhysicsMissing energy010308 nuclear & particles physicsParticle physicsBABAR detectorHEPBaBarHiggs bosonHigh Energy Physics::ExperimentFísica de partículesExperimentsBaBar detector at SLAC
researchProduct

Search for sleptons in e(+)e(-) collisions at centre-of-mass energies up to 184 GeV

1998

The data collected by the ALEPH experiment at LEP at centre-of-mass energies around 183 GeV are analysed to search for sleptons, the partners of leptons in supersymmetric theories. The previously published search for acoplanar leptons and missing energy has been updated. New searches have been developed to cover a wider range of slepton signals. These include single electrons, acoplanar leptons accompanied by two photons plus missing energy as well as particles with lifetime. No evidence for the production of any such particles is found. Slepton mass limits are reported within gravity mediated and gauge mediated SUSY breaking scenarios. (C) 1998 Elsevier Science B.V. All rights reserved.

PhysicsALEPH Experiment; susyNuclear and High Energy PhysicsAlephParticle physicsPhotonMissing energy010308 nuclear & particles physicsElectron–positron annihilationHigh Energy Physics::PhenomenologySupersymmetryElectron01 natural sciencesNuclear physicsALEPH Experiment0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]susyHigh Energy Physics::Experiment010306 general physicsALEPH experimentParticle Physics - ExperimentLepton
researchProduct

Search for an Invisibly Decaying Z′ Boson at Belle II in e+e−→μ+μ−(e±μ∓) Plus Missing Energy Final States

2020

Theories beyond the standard model often predict the existence of an additional neutral boson, the Z′. Using data collected by the Belle II experiment during 2018 at the SuperKEKB collider, we perform the first searches for the invisible decay of a Z′ in the process e+e-→μ+μ-Z′ and of a lepton-flavor-violating Z′ in e+e-→e±μZ′. We do not find any excess of events and set 90% credibility level upper limits on the cross sections of these processes. We translate the former, in the framework of an Lμ-Lτ theory, into upper limits on the Z′ coupling constant at the level of 5×10-2-1 for MZ′≤6 GeV/c2.

PhysicsCoupling constantParticle physicsMissing energyPhysics beyond the Standard ModelGeneral Physics and Astronomy01 natural scienceslaw.inventionlaw0103 physical sciencesHigh Energy Physics::Experiment010306 general physicsColliderBosonPhysical Review Letters
researchProduct